Peptide-Based Sandwich Immunoassay for the Quantification of the Membrane Transporter Multidrug Resistance Protein

Peptide-Based Sandwich Immunoassay for the Quantification of the Membrane Transporter Multidrug Resistance Protein
Poetz O, Dieze T, Hammer H, Weiß F, Sommersdorf C, Templin MF, Esdar C, Zimmermann A, Stevanovic S, Bedke J, Stenzl A, Joos TO.
Anal Chem. 2018 May 1;90(9):5788-5794. doi: 10.1021/acs.analchem.8b00152. Epub 2018 Apr 12.

Multitransmembrane proteins are notoriously difficult to analyze. To date, rapid, and cost-efficient detection methods are lacking and only mass spectrometry-based systems allow reliable quantification of these proteins. Here, we present a novel type of sandwich immunoassay that is capable of sensitively detecting multidrug resistance protein 1 (MDR1), a prototypic 12-transmembrane-domains transporter. In a first assay step, complex samples are enzymatically fragmented into peptides as routinely done for mass spectrometry. A proteotypic peptide derived from MDR1 was chosen and antibodies targeting this peptide were used to build a sandwich immunoassay. Validation of the optimized assay showed good sensitivity, reproducibility and it allowed reliable quantification of MDR1; cross-validation by mass spectrometry demonstrated the applicability for routine analyses in clinical and pharmaceutical research. MDR1 was quantified in primary human renal cell carcinoma and corresponding normal tissue and down-regulation or expression loss was found in tumor tissue corroborating its importance in drug resistance and efficacy.