Background: Paclitaxel chemotherapy frequently induces dose-limiting sensory axonal polyneuropathy. As sensory symptoms are challenging to assess objectively in clinical routine, an easily accessible biomarker for chemotherapy-induced polyneuropathy (CIPN) holds the potential to improve early diagnosis. Here, we describe neurofilament light chain (NFL), a marker for neuroaxonal damage, as translational surrogate marker for CIPN. Methods: NFL concentrations were measured in an in vitro model of CIPN, exposing induced pluripotent stem cell-derived sensory neurons (iPSC-DSN) to paclitaxel.
Breast and ovarian cancer patients undergoing paclitaxel chemotherapy, breast cancer control patients without chemotherapy and healthy controls were recruited in a cohort study and examined before chemotherapy (V1) and after 28 weeks (V2, after chemotherapy). CIPN was assessed by the validated Total Neuropathy Score reduced, which combines patient-reported symptoms with data from clinical examinations. Serum NFL (NFLs) concentrations were measured at both visits with single molecule array technology (SIMOA). Results: NFL is released from iPSC-DSN upon paclitaxel incubation in a dose- and
time-dependent manner and inversely correlates with iPSC-DSN viability. NFLs strongly increased in paclitaxel-treated patients with CIPN, but not in chemotherapy patients without CIPN or controls, resulting in an 86 % sensitivity and 87 % specificity. A NFLs increase of +36 pg/ml from baseline was associated with a predicted CIPN probability of >0.5. Conclusion: NFLs correlates with CIPN development and severity, which may guide neurotoxic chemotherapy in the future.