Genomic chondrocyte culture profiling by array-CGH, interphase-FISH and RT-PCR

Genomic chondrocyte culture profiling by array-CGH, interphase-FISH and RT-PCR
Stumm M, Boger E, Gaissmaier CG, Osswald C, Blankenburg M, Wegner RD, Mollenhauer JA
Osteoarthritis Cartilage. 2012 Sep;20(9):1039-45. Epub 2012 Jun 12.

OBJECTIVE: In vitro expansion is an important step to acquire sufficient cells in human tissue engineering technologies. The high number of chondrocytes needed for human articular cartilage implants requires in vitro expansion of the primary cells, bearing a theoretical risk of in vitro induced changes in the genomes. To gain more insights into this situation, model cultures were prepared and analyzed.

DESIGN: 25 chondrocyte cell DNA samples from nine donors were analyzed by array comparative genomic hybridization (aCGH) on whole genome level and 28 chondrocyte cell samples from 16 individuals were analyzed by fluorescence in situ hybridization (FISH) on single cell level. The expanded cells were further characterized upon the chondrocytic mRNA phenotype by reverse-transciptase polymerase chain reaction (RT-PCR).

RESULTS: The molecular karyotyping results revealed autosomal stability, but all male samples analyzed by aCGH displayed a variable loss of the Y-chromosome. These data were confirmed by FISH-experiments and suggest an age dependant effect toward the loss of the Y-chromosome in cultured chondrocytes. RT-PCR data for the mRNAs from collagen types I, II, and aggrecan and the pro-inflammatory cytokine interleukin-1ss (IL-1ss) did not reveal any correlation of transcriptional activity in cultures with Y-chromosome losses, nor were there statistically significant differences between cells from female and male donors.

CONCLUSIONS: While cells of male origin may suffer from an age-related loss of the Y-chromosome, there was no indication of a functional impairment. The data suggest some caution toward applying proliferative steps when considering chondrocytes from elderly male patients for tissue engineering approaches.