Arbeitsgebiete
Nanotechnologie, Nanolithografie mit Elektronen- und Ionenstrahlen, Elektronenstrahl- und ionenstrahlinduzierte Materialabscheidung (Additive Nanolithografie), Elektronenmikroskopie, Entwicklung von Präparationsmethoden, Dünnschichttechik, Mikrosystemtechnik
Werdegang mit den wichtigsten Stationen
2018 - heute Gruppenleiter Angewandte Materialwissenschaften und Elektronenmikroskopie
2008 - 2017 Gruppenleiter Microsysteme und Nanotechnologie
1998 – 2007 Wissenschaftlicher Angestellter am NMI, Projektleiter
1995 - 1997 Wissenschaftlicher Mitarbeiter am Hörforschungszentrum Tübingen
1997 Promotion an der Universität Tübingen
1986 - 1992 Wissenschaftlicher Mitarbeiter, Doktorand, Universität Tübingen, Institut für Angewandte Physik
1979 - 1986 Physik-Studium, Universität Tübingen
Dr. Claus J. Burkhardt
Diplom-Physiker
T +49 (0)7121 51530-55
Projekte
Publikationen
-
Impedance spectroscopy of ferroelectrics: The domain wall pinning elementBecker M., Burkhardt C., Kleiner R.J. Appl. Phys. 132, 044104 (2022); https://doi.org/10.1063/5.0096775
-
Hexagonal arrays of plasmonic gold nanopyramids on flexible substrates for surface-enhanced Raman scatteringSimo PC, Laible F, Horneber A, Burkhardt CJ, Fleischer MNanotechnology. 2021 Dec 15;33(9). doi: 10.1088/1361-6528/ac3579. PMID: 34727539.
-
Altered Proinflammatory Responses to Polyelectrolyte Multilayer Coatings Are Associated with Differences in Protein Adsorption and WettabilityBilling F, Walter B, Fink S, Arefaine E, Pickarski L, Maier S, Kretz R, Jakobi M, Feuerer N, Schneiderhan-Marra N, Burkhardt C, Templin M, Zeck A, Krastev R, Hartmann H, Shipp C.ACS Appl Mater Interfaces. 2021 Nov 24;13(46):55534-55549. doi: 10.1021/acsami.1c16175. Epub 2021 Nov 11. PMID: 34762399.
-
Rayleigh analysis and dielectric dispersion in polycrystalline 0.5(Ba0.7Ca0.3)TiO3– 0.5Ba(Zr0.2Ti0.8)O3 ferroelectric thin films by domain-wall pinning element modelingBecker M, Burkhardt C, Schröppel B, Kleiner R, Koelle DJ. Appl. Phys. 128, 154103 (2020); https://doi.org/10.1063/5.0025109
-
Sputtered Iridium Oxide as Electrode Material for Subretinal StimulationHaas J, Rudorf R, Becker M, Daschner R, Drzyzga A, Burkhardt C, Stett ASensors and Materials, Vol. 32, No. 9 (2020) 2903–2918, https://doi.org/10.18494/SAM.2020.2903
-
FIBSEM Analysis of Interfaces Between Hard Technical Devices and Soft Neuronal TissueBiesemeier A, Schröppel B, Nisch W and Burkhardt C JVolume Microscopy, Neuromethods, vol 155, https://doi.org/10.1007/978-1-0716-0691-9_11
-
Systematic Investigation of Polyurethane Biomaterial Surface Roughness on Human Immune Responses in vitroSegan S, Jakobi M, Khokhani P, Klimosch S, Billing F, Schneider M, Martin D, Metzger U, Biesemeier A, Xiong X, Mukherjee A, Steuer H, Keller B-M, Joos T, Schmolz M, Rothbauer U, Hartmann H, Burkhardt C, Lorenz G ,Schneiderhan-Marra N, and Shipp CBioMed Research International, 2020, https://doi.org/10.1155/2020/3481549
-
Josephson junctions and SQUIDs created by focused helium-ion-beam irradiation of YBa2Cu3O7Müller B, Karrer M, Limberger F, Becker M, Schröppel B, Burkhardt CJ, Kleiner R, Goldobin E, Koelle DPhys. Rev. Applied 11, 044082 – Published 25 April 2019
-
Transparent Graphene/PEDOT:PSS Microelectrodes for Electro‐ and OptophysiologyKshirsagar P, Dickreuter S, Mierzejewski M, Burkhardt CJ, Chassé T, Fleischer M, Jones PDAdvanced Materials Technologies. 2019 Jan; 4(1). doi.org/10.1002/admt.201800318
-
Transparent Graphene/PEDOT:PSS Microelectrodes for Electro- and OptophysiologyKshirsagar P, Dickreuter S, Mierzejewski M, Burkhardt CJ, Chassé T, Fleischer M, Jones PDAdv. Mater. Technol. 2019,4, 1800318
-
Multimodal Chemosensor-Based, Real-Time Biomaterial/Cell Interface MonitoringKubon M, Hartmann H, Moschallski M, Burkhardt C, Link G, Werner S, Stelzle MAdvanced Biosystems. 2018; 2(6):1700236.
-
Semitransparent carbon microelectrodes for opto- and electrophysiologyKshirsagar P, Martina M, Jones PD, Buckenmaier S, Kraushaar U, Chassé T, Fleischer M, Burkhardt CJJournal of Micromechanics and Microengineering. 2018 April; 28 (7): 075007. doi:10.1088/1361-6439/aab9f0
-
Comparison of Preparation Methods of Bacterial Cell-Mineral Aggregates for SEM Imaging and Analysis Using the Model System of Acidovorax sp. BoFeN1Zeitvogel F, Burkhardt CJ, Schröppel B, Schmid G, Ingino P, Obst MGeomicrobiology Journal (2017), Bd. 34, H. 4, S. 317-327, https://doi.org/10.1080/01490451.2016.1189467
-
3D-electron microscopic characterization of interstitial cells in the human bladder upper lamina propriaNeuhaus J, Schroppel B, Dass M, Zimmermann H, Wolburg H, Fallier-Becker P, Gevaert T, Burkhardt CJ, Do HM, Stolzenburg JUNeurourol Urodyn. 2018 Jan;37(1):89-98. doi: 10.1002/nau.23270. Epub 2017 Mar 31.
-
Design of intelligent chitosan/heparin hollow microcapsules for drug deliverySun L, Xiong X, Zou Q, Ouyang P, Burkhardt C, Krastev RJournal of Applied Polymer Science. 2017 Feb 5;134(5), 44425.
-
Electrochemical etching of micro-pores in medical grade cobalt–chromium alloy as reservoirs for drug eluting stentsFuchsberger K, Binder K, Burkhardt C, Freudigmann Ch, Herrmann M, Stelzle MJ Mater Sci Mater Med. 2016 Mar;27(3):47. doi: 10.1007/s10856-015-5660-7. Epub 2016 Jan 12.
-
3-D analysis of bacterial cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using complementary microscopy tomography approachesSchmid G, Zeitvogel F, Hao L, Ingino P, Floetenmeyer M, Stierhof YD, Schroeppel B, Burkhardt CJ, Kappler A, Obst MGeobiology. 2014 July; 12(4): 340-361. doi: 10.1111/gbi.12088.
-
Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolutionJoens MS, Huynh C, Kasuboski JM, Ferranti D, Sigal YJ, Zeitvogel F, Obst M, Burkhardt CJ, Curran KP, Chalasani SH, Stern LA, Goetze B, Fitzpatrick JASci Rep. 2013 Dec 17;3:3514. doi: 10.1038/srep03514.
-
Analytische Elektronenmikroskopie an Implantatoberflächen und biologisch-technischen GrenzflächenSchroeppel B, Nisch W, Stett A, Burkhardt CWOMag. 2013 Mai; 17-21.
-
CVD-Synthese von Kohlenstoff-Nanoröhren zur Nutzung als Mikroelektroden für neuronale AnwendungenStamm B, Schneider K, Herrmann T, Burkhardt C, Nisch W, Fleischer M, Kern DP, Stett AWOMag, 2012 Nov: 14-17.
-
Carbon nanotubes grown on polyimide by chemical vapour depositionSchneider K, Stamm B, Gutohrlein K, Fleischer M, Burkhardt C, Stett A, Kern DNanotechnology (IEEE-NANO), 2012 12th IEEE Conference on.
-
Development and characterization of a needle-type microelectrode array for stimulation and recording of neuronal activityRoehler S, Held J, Nisch W. Kern DP, Burkhardt C, Stett AMicroelectronic Engineering. 2012 Oct; 98:453-457. doi: 10.1016/j.mee.2012.07.104
-
Towards quantification of biocompatibility: Monitoring ingrowth behavior of biomaterials in tissue with a microsensor implantKubon M, Moschallski M, Ensslen T, Link G, Werner S, Burkhardt C, Hartmann H, Schlosshauer B, Urban G, Stelzle MIEEE Conference Paper, 2011, doi: 10.1109/TRANSDUCERS.2011.5969289
-
A microsensor system to probe physiological environments and tissue responseKubon M, Moschallski M, Link G, Ensslen T, Werner S, Burkhardt C, Nisch W, Scholz B, Schlosshauer B, Urban G, Stelzle MIEEE Conference Paper, 2010, doi: 10.1109/TRANSDUCERS.2011.5969289
-
Towards implantable sensors and actuators (Part 1): A microsensor device to probe biological and physiological environmentsKubon M, Moschallski M, Werner S, Link G, Burkhardt C, Nisch W, Urban G & Stelzle MBiomedizinische Technik / Biomedical Engineering (2010), 10.1515/bmt.2010.711
-
Towards implantable sensors and actuators (Part 2): Avian ex ovo culture as quasi-in vivo environmentKubon M, Moschallski M, Link G, Werner S, Burkhardt C, Nisch W, Scholz B, Schlosshauer B, Urban G & Stelzle MBiomedizinische Technik / Biomedical Engineering (2010), 10.1515/bmt.2010.520
-
Ex ovo culture: An in vivo model for microsensorarray implantsKubon M, Moschallski M, Link GS, Werner S, Burkhardt C, Nisch W, Scholz B, Schlosshauer B, Urban G, Stelzle M7th International Meeting on Substrate-Integrated Microelectrode Arrays Reutlingen, 2010, NMI, BioPro.
-
Plasma enhanced chemical vapor deposition grown carbon nanotubes from ferritin catalyst for neural stimulation microelectrodesHäffner M, Schneider K, Schuster BE, Stamm B, Latteyer F, Fleischer M, Burkhardt C, Chassé T, Stett , Kern DPMicroelectronic Engineering. 2010 May-Aug; 87(5-8):734-737. DOI 10.1016/j.mee.2009.12.017
-
Biocompatible molecularly imprinted polymers for the voltage regulated uptake and release of l-glutamate in neutral pH solutionsvon Hauff E, Fuchs K, Hellmann D Ch, Parisi J, Weiler R, Burkhardt C, Kraushaar U, Guenther EBiosens Bioelectron. 2010 Oct 15;26(2):596-601. Epub 2010 Jul 16. doi: 10.1016/j.bios.2010.07.022
-
Micro- and Nanopatterning of Surfaces Employing Self Assembly of Nanoparticles and Its Application in Biotechnology and Biomedical EngineeringBurkhardt C, Fuchsberger K, Nisch W, Stelzle MLithography. M. Wang. 2010. Wien, IN-TECH: 629-644.
-
Imaging of Cell-to-Material Interfaces by SEM after in situ Focused Ion Beam Milling on Flat Surfaces and Complex 3D-Fibrous StructuresBittermann AG, Burkhardt C, Hall HAdvanced Engineering Materials. 2009 Nov; 11(11): B182-B188. DOI 10.1002/adem.200900080
-
Preparation of nanostructured Titanium surfaces for investigations of the interface between cell monolayers and Titanium.Heeren A, Burkhardt C, Wolburg H, Henschel W, Nisch W, Kern DPMicroelectronic Engineering. 2006;83:1602-1604. DOI 10.1016/j.mee.2006.01.114
-
Visualization and in situ contacting of carbon nanotubes in a scanning electron microscope.Croitoru MD, Bertsche G, Kern DP, Burkhardt C, Bauerdick S, Sahakalkan S, Roth SJ. Vac. Sci. Technol. 2005; B 23 (6): 2789-2792. DOI: 10.1116/1.2130350
-
Addressable field emitter array: A tool for designing field emitters and a multibeam electron source.Bauerdick S, Burkhardt C, Kern DP, Nisch WJ. Vac. Sci. Technol. 2004 Oct; B 22 (6), 3539-3542. DOI: 10.1116/1.1824050
-
CYTOCENTERING: a novel technique enabling automated cell-by-cell patch clamping with the CYTOPATCH chipStett A, Burkhardt C, Weber U, van Stiphout P, Knott TReceptors Channels. 2003;9(1):59-66.
-
Long-term stimulation of mouse hippocampal slice culture on microelectrode arrayvan Bergen A, Papanikolaou T, Schuker A, Moller A, Schlosshauer BBrain Res Brain Res Protoc. 2003 May;11(2):123-33. Doi: 10.1016/S1385-299X(03)00024-2
-
In-situ monitoring of electron beam induced deposition by atomic force microscopy in a scanning electron microscope.Bauerdick S, Burkhardt C, Rudorf R, Barth W, Bucher V, Nisch WMicroelectronic Engineering. 2003 June;67-68: 963-969. DOI: 10.1016/S0167-9317(03)00160-6