Dr. Claus J. Burkhardt

Arbeitsgebiete

Nanotechnologie, Nanolithografie mit Elektronen- und Ionenstrahlen, Elektronenstrahl- und ionenstrahlinduzierte Materialabscheidung (Additive Nanolithografie), Elektronenmikroskopie, Entwicklung von Präparationsmethoden, Dünnschichttechik, Mikrosystemtechnik

Werdegang mit den wichtigsten Stationen
 
2018 - heute  Gruppenleiter Angewandte Materialwissenschaften und Elektronenmikroskopie

2008 - 2017  Gruppenleiter Microsysteme und Nanotechnologie

1998 – 2007  Wissenschaftlicher Angestellter am NMI, Projektleiter

1995 - 1997  Wissenschaftlicher Mitarbeiter am Hörforschungszentrum Tübingen

1997  Promotion an der Universität Tübingen

1986 - 1992  Wissenschaftlicher Mitarbeiter, Doktorand, Universität Tübingen, Institut für Angewandte Physik

1979 - 1986  Physik-Studium, Universität Tübingen
Dr. Claus J. Burkhardt
Diplom-Physiker
T +49 (0)7121 51530-55

Publikationen

  • Impedance spectroscopy of ferroelectrics: The domain wall pinning element
    Becker M., Burkhardt C., Kleiner R.
    J. Appl. Phys. 132, 044104 (2022); https://doi.org/10.1063/5.0096775
  • Hexagonal arrays of plasmonic gold nanopyramids on flexible substrates for surface-enhanced Raman scattering
    Simo PC, Laible F, Horneber A, Burkhardt CJ, Fleischer M
    Nanotechnology. 2021 Dec 15;33(9). doi: 10.1088/1361-6528/ac3579. PMID: 34727539.
  • Altered Proinflammatory Responses to Polyelectrolyte Multilayer Coatings Are Associated with Differences in Protein Adsorption and Wettability
    Billing F, Walter B, Fink S, Arefaine E, Pickarski L, Maier S, Kretz R, Jakobi M, Feuerer N, Schneiderhan-Marra N, Burkhardt C, Templin M, Zeck A, Krastev R, Hartmann H, Shipp C.
    ACS Appl Mater Interfaces. 2021 Nov 24;13(46):55534-55549. doi: 10.1021/acsami.1c16175. Epub 2021 Nov 11. PMID: 34762399.
  • Rayleigh analysis and dielectric dispersion in polycrystalline 0.5(Ba0.7Ca0.3)TiO3– 0.5Ba(Zr0.2Ti0.8)O3 ferroelectric thin films by domain-wall pinning element modeling
    Becker M, Burkhardt C, Schröppel B, Kleiner R, Koelle D
    J. Appl. Phys. 128, 154103 (2020); https://doi.org/10.1063/5.0025109
  • Sputtered Iridium Oxide as Electrode Material for Subretinal Stimulation
    Haas J, Rudorf R, Becker M, Daschner R, Drzyzga A, Burkhardt C, Stett A
    Sensors and Materials, Vol. 32, No. 9 (2020) 2903–2918, https://doi.org/10.18494/SAM.2020.2903
  • FIBSEM Analysis of Interfaces Between Hard Technical Devices and Soft Neuronal Tissue
    Biesemeier A, Schröppel B, Nisch W and Burkhardt C J
    Volume Microscopy, Neuromethods, vol 155, https://doi.org/10.1007/978-1-0716-0691-9_11
  • Systematic Investigation of Polyurethane Biomaterial Surface Roughness on Human Immune Responses in vitro
    Segan S, Jakobi M, Khokhani P, Klimosch S, Billing F, Schneider M, Martin D, Metzger U, Biesemeier A, Xiong X, Mukherjee A, Steuer H, Keller B-M, Joos T, Schmolz M, Rothbauer U, Hartmann H, Burkhardt C, Lorenz G ,Schneiderhan-Marra N, and Shipp C
    BioMed Research International, 2020, https://doi.org/10.1155/2020/3481549
  • Josephson junctions and SQUIDs created by focused helium-ion-beam irradiation of YBa2Cu3O7
    Müller B, Karrer M, Limberger F, Becker M, Schröppel B, Burkhardt CJ, Kleiner R, Goldobin E, Koelle D
    Phys. Rev. Applied 11, 044082 – Published 25 April 2019
  • Transparent Graphene/PEDOT:PSS Microelectrodes for Electro‐ and Optophysiology
    Kshirsagar P, Dickreuter S, Mierzejewski M, Burkhardt CJ, Chassé T, Fleischer M, Jones PD
    Advanced Materials Technologies. 2019 Jan; 4(1). doi.org/10.1002/admt.201800318
  • Transparent Graphene/PEDOT:PSS Microelectrodes for Electro- and Optophysiology
    Kshirsagar P, Dickreuter S, Mierzejewski M, Burkhardt CJ, Chassé T, Fleischer M, Jones PD
    Adv. Mater. Technol. 2019,4, 1800318
  • Multimodal Chemosensor-Based, Real-Time Biomaterial/Cell Interface Monitoring
    Kubon M, Hartmann H, Moschallski M, Burkhardt C, Link G, Werner S, Stelzle M
    Advanced Biosystems. 2018; 2(6):1700236.
  • Semitransparent carbon microelectrodes for opto- and electrophysiology
    Kshirsagar P, Martina M, Jones PD, Buckenmaier S, Kraushaar U, Chassé T, Fleischer M, Burkhardt CJ
    Journal of Micromechanics and Microengineering. 2018 April; 28 (7): 075007. doi:10.1088/1361-6439/aab9f0
  • Comparison of Preparation Methods of Bacterial Cell-Mineral Aggregates for SEM Imaging and Analysis Using the Model System of Acidovorax sp. BoFeN1
    Zeitvogel F, Burkhardt CJ, Schröppel B, Schmid G, Ingino P, Obst M
    Geomicrobiology Journal (2017), Bd. 34, H. 4, S. 317-327, https://doi.org/10.1080/01490451.2016.1189467
  • 3D-electron microscopic characterization of interstitial cells in the human bladder upper lamina propria
    Neuhaus J, Schroppel B, Dass M, Zimmermann H, Wolburg H, Fallier-Becker P, Gevaert T, Burkhardt CJ, Do HM, Stolzenburg JU
    Neurourol Urodyn. 2018 Jan;37(1):89-98. doi: 10.1002/nau.23270. Epub 2017 Mar 31.
  • Design of intelligent chitosan/heparin hollow microcapsules for drug delivery
    Sun L, Xiong X, Zou Q, Ouyang P, Burkhardt C, Krastev R
    Journal of Applied Polymer Science. 2017 Feb 5;134(5), 44425.
  • Electrochemical etching of micro-pores in medical grade cobalt–chromium alloy as reservoirs for drug eluting stents
    Fuchsberger K, Binder K, Burkhardt C, Freudigmann Ch, Herrmann M, Stelzle M
    J Mater Sci Mater Med. 2016 Mar;27(3):47. doi: 10.1007/s10856-015-5660-7. Epub 2016 Jan 12.
  • 3-D analysis of bacterial cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using complementary microscopy tomography approaches
    Schmid G, Zeitvogel F, Hao L, Ingino P, Floetenmeyer M, Stierhof YD, Schroeppel B, Burkhardt CJ, Kappler A, Obst M
    Geobiology. 2014 July; 12(4): 340-361. doi: 10.1111/gbi.12088.
  • Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution
    Joens MS, Huynh C, Kasuboski JM, Ferranti D, Sigal YJ, Zeitvogel F, Obst M, Burkhardt CJ, Curran KP, Chalasani SH, Stern LA, Goetze B, Fitzpatrick JA
    Sci Rep. 2013 Dec 17;3:3514. doi: 10.1038/srep03514.
  • Analytische Elektronenmikroskopie an Implantatoberflächen und biologisch-technischen Grenzflächen
    Schroeppel B, Nisch W, Stett A, Burkhardt C
    WOMag. 2013 Mai; 17-21.
  • CVD-Synthese von Kohlenstoff-Nanoröhren zur Nutzung als Mikroelektroden für neuronale Anwendungen
    Stamm B, Schneider K, Herrmann T, Burkhardt C, Nisch W, Fleischer M, Kern DP, Stett A
    WOMag, 2012 Nov: 14-17.
  • Carbon nanotubes grown on polyimide by chemical vapour deposition
    Schneider K, Stamm B, Gutohrlein K, Fleischer M, Burkhardt C, Stett A, Kern D
    Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference on.
  • Development and characterization of a needle-type microelectrode array for stimulation and recording of neuronal activity
    Roehler S, Held J, Nisch W. Kern DP, Burkhardt C, Stett A
    Microelectronic Engineering. 2012 Oct; 98:453-457. doi: 10.1016/j.mee.2012.07.104
  • Towards quantification of biocompatibility: Monitoring ingrowth behavior of biomaterials in tissue with a microsensor implant
    Kubon M, Moschallski M, Ensslen T, Link G, Werner S, Burkhardt C, Hartmann H, Schlosshauer B, Urban G, Stelzle M
    IEEE Conference Paper, 2011, doi: 10.1109/TRANSDUCERS.2011.5969289
  • A microsensor system to probe physiological environments and tissue response
    Kubon M, Moschallski M, Link G, Ensslen T, Werner S, Burkhardt C, Nisch W, Scholz B, Schlosshauer B, Urban G, Stelzle M
    IEEE Conference Paper, 2010, doi: 10.1109/TRANSDUCERS.2011.5969289
  • Towards implantable sensors and actuators (Part 1): A microsensor device to probe biological and physiological environments
    Kubon M, Moschallski M, Werner S, Link G, Burkhardt C, Nisch W, Urban G & Stelzle M
    Biomedizinische Technik / Biomedical Engineering (2010), 10.1515/bmt.2010.711
  • Towards implantable sensors and actuators (Part 2): Avian ex ovo culture as quasi-in vivo environment
    Kubon M, Moschallski M, Link G, Werner S, Burkhardt C, Nisch W, Scholz B, Schlosshauer B, Urban G & Stelzle M
    Biomedizinische Technik / Biomedical Engineering (2010), 10.1515/bmt.2010.520
  • Ex ovo culture: An in vivo model for microsensorarray implants
    Kubon M, Moschallski M, Link GS, Werner S, Burkhardt C, Nisch W, Scholz B, Schlosshauer B, Urban G, Stelzle M
    7th International Meeting on Substrate-Integrated Microelectrode Arrays Reutlingen, 2010, NMI, BioPro.
  • Plasma enhanced chemical vapor deposition grown carbon nanotubes from ferritin catalyst for neural stimulation microelectrodes
    Häffner M, Schneider K, Schuster BE, Stamm B, Latteyer F, Fleischer M, Burkhardt C, Chassé T, Stett , Kern DP
    Microelectronic Engineering. 2010 May-Aug; 87(5-8):734-737. DOI 10.1016/j.mee.2009.12.017
  • Biocompatible molecularly imprinted polymers for the voltage regulated uptake and release of l-glutamate in neutral pH solutions
    von Hauff E, Fuchs K, Hellmann D Ch, Parisi J, Weiler R, Burkhardt C, Kraushaar U, Guenther E
    Biosens Bioelectron. 2010 Oct 15;26(2):596-601. Epub 2010 Jul 16. doi: 10.1016/j.bios.2010.07.022
  • Micro- and Nanopatterning of Surfaces Employing Self Assembly of Nanoparticles and Its Application in Biotechnology and Biomedical Engineering
    Burkhardt C, Fuchsberger K, Nisch W, Stelzle M
    Lithography. M. Wang. 2010. Wien, IN-TECH: 629-644.
  • Imaging of Cell-to-Material Interfaces by SEM after in situ Focused Ion Beam Milling on Flat Surfaces and Complex 3D-Fibrous Structures
    Bittermann AG, Burkhardt C, Hall H
    Advanced Engineering Materials. 2009 Nov; 11(11): B182-B188. DOI 10.1002/adem.200900080
  • Preparation of nanostructured Titanium surfaces for investigations of the interface between cell monolayers and Titanium.
    Heeren A, Burkhardt C, Wolburg H, Henschel W, Nisch W, Kern DP
    Microelectronic Engineering. 2006;83:1602-1604. DOI 10.1016/j.mee.2006.01.114
  • Visualization and in situ contacting of carbon nanotubes in a scanning electron microscope.
    Croitoru MD, Bertsche G, Kern DP, Burkhardt C, Bauerdick S, Sahakalkan S, Roth S
    J. Vac. Sci. Technol. 2005; B 23 (6): 2789-2792. DOI: 10.1116/1.2130350
  • Addressable field emitter array: A tool for designing field emitters and a multibeam electron source.
    Bauerdick S, Burkhardt C, Kern DP, Nisch W
    J. Vac. Sci. Technol. 2004 Oct; B 22 (6), 3539-3542. DOI: 10.1116/1.1824050
  • CYTOCENTERING: a novel technique enabling automated cell-by-cell patch clamping with the CYTOPATCH chip
    Stett A, Burkhardt C, Weber U, van Stiphout P, Knott T
    Receptors Channels. 2003;9(1):59-66.
  • Long-term stimulation of mouse hippocampal slice culture on microelectrode array
    van Bergen A, Papanikolaou T, Schuker A, Moller A, Schlosshauer B
    Brain Res Brain Res Protoc. 2003 May;11(2):123-33. Doi: 10.1016/S1385-299X(03)00024-2
  • In-situ monitoring of electron beam induced deposition by atomic force microscopy in a scanning electron microscope.
    Bauerdick S, Burkhardt C, Rudorf R, Barth W, Bucher V, Nisch W
    Microelectronic Engineering. 2003 June;67-68: 963-969. DOI: 10.1016/S0167-9317(03)00160-6