Aptamers

Concept

Motivation
- Many patients suffer from severe inflammatory responses after implantation of vascular implants.
- Improvement of biocompatibility of vascular implants by coating with endothelial progenitor cells (EPC) in vitro.
- EPCs are used as EPC specific capture molecules [1] on the implant surface to select autologous EPCs directly out of the bloodstream.
- EPCs proliferate into non-thrombogenic endothelium and minimize risk of inflammation.

Capture and assembly of living cells by dielectrophoretic forces between interdigitating electrodes on the bottom of the microfluidic channel [2] (3).

Aptamers are used as EPC specific capture molecules [1] on the cell surfaces. Unbound aptamers are again flushed out. (4)

Improvement of biocompatibility of vascular implants by coating with endothelial progenitor cells (EPC) in vitro.

Utilizing dielectrophoretic and electrophoretic forces in a microfluidic system for the selection of EPC specific aptamers.

Reduction of false positive hits by decreasing the number of dead cells in the assay during dielectrophoretic assembly.

In-flow incubation of assembled cells with aptamer molecules.

Utilizing the charge of the aptamers for electrophoretic separation of unspecifically bound aptamers from cell surfaces.

Innovation

Aptamers
- Short RNA or DNA oligonucleotides (25 to 90 nucleotides).
- Show high binding affinity and specificity to the 3D structure of the target molecule.

Microfluidic chip

Figure 1: Schematic representation of the steps for obtaining specific cell surface binding aptamers in our microfluidic chip: (1) Cell assembly

Dielectrophoresis

Cells are assembled by positive dielectrophoresis.

Enrichment of viable cells reduces unspecific aptamer binding.

Cells are retained by dielectrophoresis during incubation with aptamers.

Fluid flow

- Aptamers flowing through channel are evenly distributed along channel width.
- Uniform incubation of assembled cells with aptamers in-flow is possible.

References

Acknowledgement

Chip fabrication in the NMI cleanroom by Dr. Joachim Held is gratefully acknowledged.

Funding

By the MWK BW through grant No. 720.830.5.9a.